
When the User Is Inside the User Interface:
An Empirical Study of UI Security Properties in Augmented Reality

Kaiming Cheng, Arkaprabha Bhattacharya, Michelle Lin, Jaewook Lee, Aroosh Kumar, Jeffery F. Tian,
Tadayoshi Kohno, Franziska Roesner

Paul G. Allen School of Computer Science & Engineering, University of Washington
https://ar-sec.cs.washington.edu

{kaimingc, arkabhat, mlin88, jaewook4, arkumar, jefftian, yoshi, franzi}@cs.washington.edu

Abstract
Augmented reality (AR) experiences place users inside

the user interface (UI), where they can see and interact with
three-dimensional virtual content. This paper explores UI
security for AR platforms, for which we identify three UI
security-related properties: Same Space (how does the plat-
form handle virtual content placed at the same coordinates?),
Invisibility (how does the platform handle invisible virtual
content?), and Synthetic Input (how does the platform handle
simulated user input?). We demonstrate the security implica-
tions of different instantiations of these properties through five
proof-of-concept attacks between distrusting AR application
components (i.e., a main app and an included library) — in-
cluding a clickjacking attack and an object erasure attack. We
then empirically investigate these UI security properties on
five current AR platforms: ARCore (Google), ARKit (Apple),
Hololens (Microsoft), Oculus (Meta), and WebXR (browser).
We find that all platforms enable at least three of our proof-
of-concept attacks to succeed. We discuss potential future
defenses, including applying lessons from 2D UI security and
identifying new directions for AR UI security.

1 Introduction

Extensive past research and practice have considered user
interface (UI) security for two-dimensional screens (desktop,
browser, and mobile), e.g., clickjacking attacks that trick the
user into interacting with UI elements [33,37,44,54,67,82], in-
formation leakage via the user interface [27,42], and isolating
UI components from other entities [13, 74, 92]. In this paper,
we explore UI security in emerging augmented reality (AR)
platforms.1 AR immerses the user inside a three-dimensional
user interface — including, in some contexts, the real world

1We use the term “augmented reality (AR)” to refer to technologies that
place virtual content in a user’s view of a real-world environment, whether
embedded in it or overlaid on it. Other works may use other terms to refer
to the same or related concepts, including mixed reality (MR) and extended
reality (XR). We focus on AR and while we believe some findings might be
possible in VR too, we are not in a position to fully clarify all differences
between AR and VR.

itself — in contrast to the user merely observing it from the
outside.

Scope and Threat Model. UI-level security for AR includes
potential attacks on: (1) the user’s perception of the physical
world, (2) the virtual world or other virtual content, and (3) the
user’s interactions with virtual content. Regarding the first
threat model, recent work has begun to study security and
privacy for emerging AR platforms more generally, including
some UI-related issues related to attacks on physical world
perception. For example, it has discussed or demonstrated
attacks in which malicious AR content is used to obscure
important real-world (or virtual) content [43, 61] and side-
channel attacks that allow malicious applications to infer
information about the user’s physical surroundings [70, 99,
101]. In this work, we consider a threat model where multiple
entities might be interacting within the AR UI, such as third-
party embedded code (e.g., a library) running inside an AR
application in which the embedded code (e.g., the library)
seeks to compromise a property of the AR application or vice
versa. As the ecosystem continues to develop, we envision
our threat model extending to future multi-user/multiple AR
applications simultaneously augmenting the user’s view of
the world.

Given our focus on multiple principals, we thus particularly
consider threat models (2) and (3), i.e., from one principal on
another principal’s virtual content and on the user’s interaction
with another principal.

AR UI Security Attacks and Properties. Given this prob-
lem scope, we prototype several multi-principal UI security
attacks on currently available AR platforms. These include:

1. A clickjacking attack on ARKit (Apple), where a ma-
licious AR application component tricks the user into
interacting with another component’s virtual object. This
attack is achieved by placing both objects at the same
3D coordinates and taking advantage of ARKit’s incon-
sistency about which object is visible and which receives
user input.

2. A user input denial-of-service attack on Hololens (Mi-

https://ar-sec.cs.washington.edu

crosoft), where a malicious AR application component
blocks the user from interacting with another or any vir-
tual object. This attack is achieved by surrounding the
target AR object in an invisible 3D box and/or entirely
surrounding the user with an invisible 3D virtual box
that captures all user input. This attack is possible on
platforms that support invisible objects that are allowed
to receive inputs.

3. An input forgery attack in ARCore (Google), where a
malicious AR application component impersonates the
user’s interaction with virtual objects, even when they
are not within the user’s field of view. This attack is
achieved by programmatically generating synthetic user
interactions, taking advantage of the absence of input
provenance, i.e., the ability to verify the origin of input.

4. A object-in-the-middle attack on Oculus (Meta), where
a malicious AR application component snoops on the
user’s interactions with another component’s virtual ob-
ject. This attack is achieved by a combination of (a) an
invisible object that intercepts the user’s intended input,
and (b) synthetic user input that is then dispatched to the
original target object.

5. An object erasure attack in WebXR (browser), where a
malicious AR application component uses an invisible
virtual object to cause an underlying victim virtual object
to disappear completely. This attack is possible due to
WebXR’s method for rendering invisible objects.

These proof-of-concept attacks are possible because of
the way each platform implements three specific UI-related
properties that we identified: What happens when multiple
virtual objects are placed at the same 3D physical coordinates
(“Same Space” property)? (2) How do “invisible” virtual
objects work (“Invisibility” property)? (3) Do platforms allow
synthetic user input (“Synthetic User Input” property)?

Empirical Evaluation of Current AR Platforms and SDKs.
After identifying these properties and demonstrating their se-
curity and privacy implications through the proof-of-concept
attacks, we conduct a systematic empirical investigation of
how current AR platforms and SDKs handle them. Specifi-
cally, we conduct experiments with ARCore (Google), ARKit
(Apple), Hololens (Microsoft), Oculus (Meta), and WebXR
(browser). We find inconsistencies in how current platforms
handle the AR UI security properties that we identify and
observe that many current implementations of these platforms
enable attacks such as those we describe above.

Towards Future Defenses. Our results highlight the necessity
for emerging AR platforms to implement UI-level security
precautions in their designs and implementations. However,
defenses are not necessarily straightforward. In some cases,
we recommend that platforms adopt known approaches from
2D UI security (e.g., adding user input provenance informa-
tion [11]), though we found that no current platform has im-
plemented this feature. In other cases, AR-specific approaches

may need to be devised [63] or AR-specific tradeoffs consid-
ered (e.g., aligning the physics and rendering engines around
UI security properties and handling UI isolation in a 3D,
interleaved context [60]) when 2D mitigation fails to work.

Contributions. We contribute the following:
1. We identify three AR UI properties that have security

and/or privacy implications and provide criteria for
evaluating them (Section 3).

2. Based on these properties, we demonstrate five proof-
of-concept AR UI security attacks that are possible on
today’s AR platforms (Section 4).

3. We present results of an empirical analysis of these
AR UI security properties in five commercially available
AR platforms and associated SDKs: ARCore, ARKit,
Hololens, Oculus, and WebXR (Section 5).

Finally, we reflect on foundations for future defenses,
including known defenses that have not to date been applied to
AR platforms and SDKs, as well as potential novel defensive
directions (Section 6).

Disclosure. We have reported all of our findings to Apple,
Google, Meta, Microsoft, WebXR, and Unity.

2 Background and Motivation

We begin with background on AR technologies, AR UI, and
prior work on AR security and privacy to motivate our work.

Augmented Reality. AR technologies — technologies that
seamlessly blend the physical and the digital worlds — are
receiving increasing attention from both academia and in-
dustry. Once considered niche yet expensive research pro-
totypes, AR devices are becoming more available and af-
fordable, and mainstream smartphones and browsers are now
supporting AR functionalities. Technologies like Microsoft’s
Hololens 2 [16], Meta’s Oculus Quest 3 [15], Nreal’s AR
smartglass [17], Snapchat’s Spectacles [22], and Apple’s
newly announced Vision Pro headset [3] are transforming pre-
vious visions for AR into market-ready products. In addition
to the hardware advancements, the platforms and application
development ecosystems surrounding these technologies are
growing, as well. In this paper, we study five leading AR
platforms: Apple’s ARKit [9], Google’s ARCore [5], Meta’s
Oculus Integration [20], Microsoft’s MRTK [30] for Hololens,
and WebXR [28] for the web. These platforms cover all three
AR hardware form factors currently available: handheld mo-
bile devices, video passthrough AR headsets, and optical see-
through AR headsets.

UI in Augmented Reality. Unlike traditional 2D contexts
where users interact with UI content on flat screens, the AR UI
is a conjunction of visual elements from the physical world,
the AR virtual world, and the user’s interactions within the
immersive 3D world. The AR context requires that the system

process and understand the physical world surrounding the
user [7,8,14,18,47], and virtual content is often “anchored” to
physical-world surfaces, requiring rapid updates in response
to change’s in the user’s physical surroundings or position.

Figure 1 shows how these elements are combined by
platform-specific SDKs that process sensory data from the
physical world as well as user input, and then pass this data to
the platform’s rendering engine to generate the final UI that
is perceived by the user. Some SDKs include their own ren-
dering engine; for example, both ARCore and ARKit handle
rendering using the platform-specific built-in engine. Other
SDKs offload rendering to external engines or libraries; e.g.,
while both Hololens 2 and Meta Quest provide their own plat-
form SDKs, rendering is managed by existing game engines
like Unity [25] or Unreal [26], while WebXR uses existing
3D rendering JavaScript libraries, such as Three.js [23] or
Babylon.js [10]. The breadth and complexity of this ecosys-
tem mean that different AR platforms may make different
design or implementation choices in building the AR UI expe-
rience, and platform developers may fail to realize the security,
privacy, and safety implications of these decisions or their in-
tegrations of different components.

Security and Privacy for AR. We add to a growing body
of work from the computer security and privacy community,
which has been addressing security, privacy, and safety risks
in AR for over a decade [78]. The initial security threat mod-
eling taxonomies for AR were proposed by Roesner et al.,
identifying input, data access, and output as key areas of con-
cern [79]. Guzman et al. then built on these categories, in-
corporating user interaction and device protection [46]. Much
prior AR security work falls into these taxonomies, includ-
ing studies focusing on sensor data input privacy in AR/VR
platforms [50, 55, 56, 86, 93, 95, 101], on device and network
safety [52, 87, 90], on user input [63, 88] and work identify-
ing and addressing malicious AR output [32, 43, 61]. Prior
works also proposed mitigation strategies via AR platform
design [56, 59, 61, 80, 81, 96]. Though some of these prior
works touched on topics related to AR UI security (e.g., vir-
tual content “output attacks” by malicious AR apps [43, 59]),
to our knowledge no prior work has systematically studied
AR UI security — including both application output and user
input — as we do in this paper.

3 Selected Properties and Evaluation Metrics

In Section 1, we described five proof-of-concept attacks on
AR UI security. Before we return to these attacks in Section 4,
we first identify and introduce three key AR UI security re-
lated properties that underpin these types of attacks.

Properties. Our team, which included eight researchers, con-
ducted multiple rounds of interactive threat modeling, struc-
tured brainstorming, and preliminary experiments to generate

Figure 1: Overview of Augmented Reality User Interface. The
yellow box represents the three main components: perception
of the physical world, virtual AR world, and user interaction.

and refine ideas for design choices, properties, and/or test
cases for AR platforms. Six (of eight) authors participated in
the brainstorming process. This process involved: (1) each au-
thor independently generating security or privacy related ques-
tions and associated testable properties about AR platform
designs (using sticky notes and a spreadsheet), (2) multiple
authors reviewing and refining each row of the spreadsheet,
and (3) clustering the properties according to themes (e.g.,
user input, multiple applications or components, hardware,
sensors). From there, we chose to focus on AR UI security
issues because we found them particularly interesting given
the relationship between the UI, the environment, and the user
and underexplored in current platforms.

1. Same Space. How do AR systems manage objects that
share the same physical world mapping? For instance,
when two AR objects with identical shapes and sizes are
anchored at the same 3D coordinates, which object(s)
become visible to the user? Which receive (s) the user’s
input? We leverage this property in the clickjacking at-
tack (Section 4.2).

2. Invisibility. How do AR systems handle virtual objects
in the AR world that are transparent? To what extent, if
any, does an object’s visibility influence its functionality?

For example, are transparent objects capable of receiving
user input? What happens when a transparent object
renders over another virtual object? We leverage this
property in the user input denial-of-service (Section 4.3),
object-in-the-middle (Section 4.5), and object erasure
(Section 4.6) attacks.

3. Synthetic User Input. How do AR systems handle syn-
thetic user input? For example, can adversarial code gen-
erate synthetic input to mimic human interaction, such as
via a programmatically generated raycast? We leverage
this property in the input forgery (Section 4.4) and the
object-in-the-middle (Section 4.5) attacks.

Evaluation Metrics. Moving from these properties and ques-
tions to specific evaluation metrics that we can use in our
empirical investigation of platforms in Section 5:

For Same-Space, if two virtual objects from different appli-
cation components are created with the same size and placed
at the same 3D coordinates, we evaluate:

• Rendering Order: Is the object placed first or the object
placed second visible?

• Interaction Order: Does the object placed first or the
object placed second receive user input?

• Rendering Flicker-Free: Is rendering order consistent
within a single trial, or does it flicker?

• Rendering Consistency: Is rendering order consistent
across trials?

• Interaction Consistency: Is interaction order consistent
across trials?

• Rendering-Interaction Consistency: Are the object that
is visible and the object that receive user input the same
object?

For Invisibility, if objects are transparent, we evaluate:
• Create Invisible Object: Using each of the following

possible invisibility mechanisms, can an invisible object
be created? Mechanisms include: (1) setting a zero al-
pha value, (2) disabling the object’s renderer, (3) using
a null material for the object, and (4) using a custom
transparent material for the object?

• Invisible User Interaction: Can invisible objects based
on the preceding mechanism take user input?

• Composes as Expected with Virtual Objects: If an in-
visible object is rendered overlapping another virtual
object, what is the resulting visible rendering? Is the
other virtual object visible? 2

For Synthetic Input, if input is not created by real AR
users, we evaluate:

• Create Synthetic Input: Does the platform support syn-
thetic user input, such as through a simulated raycast?

2We were motivated to add this evaluation metric after discovering the
object erasure attack for WebXR, described in Section 4.6.

• Invisible Synthetic Input: When synthetic input is dis-
patched, has any visible indication to the user occurred
(e.g., via a visible raycast)?

• Input Provenance: When a virtual object receives user
input, is there a way for it to distinguish real user input
from synthetic input?

We stress that completeness, in properties or metrics, is not
our goal. Instead, we focus on metrics derived from our brain-
storming activity that we considered important, challenging,
and interesting in the AR context.

Valid Use Cases for Properties. While we focus on the secu-
rity implication of these properties, we emphasize that they
can also enable necessary features in many AR applications.
Thus, seemingly simple solutions such as disallowing objects
from occupying the same space, disabling invisible objects,
or disallowing synthetic input will not be tenable.

The Same Space property allows designers and developers
greater flexibility when creating AR experiences, enabling
them to design complex scenes and arrangements where ob-
jects can interact, stack, or blend with each other in creative
ways. In architectural or interior design AR applications, the
ability for virtual objects to overlap becomes particularly
useful as they can represent multiple layers or illustrate the
relationships between different elements, providing a rich vi-
sual representation of the design. Moreover, the Same Space
property facilitates intuitive user interaction and manipulation.
Users can freely move around in the physical space, effort-
lessly viewing, moving, rotating, or scaling individual objects.
The dynamic updating of visuals in response to changes in the
user’s physical surroundings or interaction occurs smoothly
without rigid collision constraints, ensuring a seamless and
natural experience.

The Invisibility property also contributes to a broad range
of practical functionalities. For example, Pokemon Go, one of
the most popular AR games, uses invisible objects as a place-
holder for Pokemon that are still under development [31].
Moreover, existing research corroborates the value of this
functionality in medical training scenarios [39]. Here, the AR
objects are designed to be context-sensitive and can transi-
tion to an invisible state, allowing surgeons to look through
overlaid content without obstruction. In addition, invisibility
is also widely used for handling occlusion between virtual
objects and real-world objects to ensure that virtual objects
are realistically occluded by real-world objects, improving
overall immersiveness [6].

The Synthetic User Input property, commonly imple-
mented via raycasting, is integral to the functioning of AR
features. Its primary function is to indicate user interaction
and selection in the real world by returning information about
the selection, such as the distance, position, or a reference to
a real-world object (plane, surface) or virtual AR object. The
many legitimate use cases of synthetic user input include, for
example, an AR shooting game that generates synthetic input

as a shooting ray to intersect with the designated object.
Hence, it is crucial not to simply disable the features associ-

ated with these properties solely due to their potential security
implications. Rather, we advocate that AR platform and ap-
plication designers carefully consider the potential security
implications in addition to the desirable use cases.

4 Threat Model and Proof-of-Concept Attacks

We now return to the proof-of-concept AR UI security attacks
that we previewed in Section 1. First, we detail our threat
model. Then, we describe in detail our proof-of-concept at-
tacks on five AR platforms (ARCore, ARKit, Hololens, Ocu-
lus, and WebXR). Though we choose one platform on which
to implement each attack, our empirical investigation in Sec-
tion 5 will reveal that multiple platforms provide the precon-
ditions for implementing most attacks.

4.1 Threat Model And Attack Preconditions
We assume adversarial behavior might extend from one en-
tity (e.g., an included ad library) to another entity (e.g., the
main app), or vice versa. Attackers could directly call the API
from the SDK to either gather sensitive information from the
AR application (e.g., location of a target AR object) or place
content within the AR virtual world. Our threat model resem-
bles those used in other platforms, e.g., malicious third-party
iframes [36,98] or included third-party libraries in the mobile
ecosystem [97,100]. However, the current AR environment is
arguably more vulnerable given there are no iframe-like prim-
itives that isolate the execution of third-party code; instead, it
shares a portion of the displayed AR scene.

All proof-of-concept attacks rely on at most these three
preconditions (in addition to the individual attack-specific
metrics we test): (1) the location of the targeted object, (2)
the ability to generate virtual content interleaved with the vic-
tim’s content, and (3) the execution of synthetic input. These
preconditions are straightforwardly met in today’s systems,
where third-party libraries are included in applications as
either the attacker or victim components.

4.2 Clickjacking: Leveraging Inconsistency be-
tween Rendering and Interaction Orders

Attack Motivation: Bait User Interaction. Clickjacking is
an attack that fools users into thinking they are clicking on
one thing when they are actually clicking on another. As they
can on web and mobile platforms today, app developers will
be able to use third-party ad libraries on AR to display ads and
generate revenue. AR advertising has attracted huge interest,
and revenue in this market is projected to reach US $1.05
billion in 2023 [4]. Attackers are well-incentivized to mount
clickjacking attacks on ads it includes, tricking users into
clicking on them and thereby increasing ad revenues. Prior

(a) User’s view of an AR advertisement object.

(b) Demonstration of the clickjacking attack

Figure 2: Clickjacking attack on ARKit. ① The advertise-
ment object displayed in the AR world. ② A prompt after
the advertisement is clicked. ③ A bait AR object rendered on
top of the advertisement object exploiting the Same Space
property. ④ An accompanying bait AR object. After the user
clicks on the bait object ③, the interaction goes into the ad-
vertisement object ① and generates the prompt ②.

work has hypothesized and demonstrated clickjacking attacks
through hijacking the cursor in the context of VR [63]. Here,
we demonstrate one type of clickjacking attack in AR without
modifying the user’s interaction.

Attack Design. We implement this attack in iPhone 13 using
the ARKit SDK. Our intuition is that the AR platform will
handle the rendering sequence and interaction sequence differ-
ently when two objects are placed in the same 3D coordinates.
For example, when we place two AR objects in ARKit using
the same anchor ((object.setParent(AnchorEntity))),
the object placed second will always render over the first
object, but the user’s interaction will always trigger the func-
tionality of the first, now hidden object. The attacker here is
a revenue-hungry developer. The ad revenue will go to the
developer as the user’s interaction with the bait object goes
into the ad object. The preconditions for this attack are (1) the
location of the targeted object, and (2) the ability to generate
virtual content interleaved with the victim’s content.

Figure 2 illustrates the attack. When the victim/user
launches the application, an advertising platform places a
third-party ad ① in a certain bounded region of the main app,
and a revenue-hungry developer/attacker then places a new in-
teractive bait object ③ in the same space as the advertisement.
This component displays the message “click here to win your

free cookie" to bait user clicks. However, the user’s interac-
tion with the bait object actually triggers the underlying ad ①
even as the attacker ’steals’ revenue from the click.

4.3 Denial-of-Service Proof-of-Concept: Lever-
age Invisibility

(a) User’s view of the victim ob-
ject. User is able to interact with
the object.

(b) Demonstration of the first
denial of service attack. “Cage”
covers the object.

(c) Demonstration of the second denial of service attack. “Cage”
covers the entire space.

Figure 3: Denial-of-user-input attack on Hololens. ① The
user can select and interact with the victim object (red). ② The
attacker overlays a fully transparent object over the victim ob-
ject (red). For demonstration, we make the transparent object
(“cage”) slightly visible. ③ The invisible “cage” blocks user
interaction with the victim object (red). ④ In addition, the
attacker can surround the user in a fully transparent “cage”.
⑤ The invisible “cage” blocks the user from interacting with
any AR objects , in this case, the red and blue AR objects.

Attack Motivation: Block User Interaction. A denial-of-
service attack refers to an explicit attempt by a malicious
entity to deny legitimate users access to an object/service. In
this context, the attacker’s goal is to stealthily prevent the user
from interacting with the target AR object, e.g., preventing the
user from engaging with a competitor’s content or disrupting
the user from properly engaging with any AR object.

Attack Design. We implement two variant of the denial-
of-service attacks in Hololens 2 using the MRTK. The

(a) User’s view of the victim
app.

(b) Demonstration of the input
forgery attack

Figure 4: Input forgery attack on ARCore. ① The adver-
tisement object displayed in the AR world. ② When the ad-
vertisement object is outside of the user’s view, ③ the attacker
launches a synthetic input to interact with the object. The
prompt demonstrates the attack is successful.

attack insight is that the Hololens default raycast im-
plementation, i.e., private static RaycastResult
PrioritizeRaycastResult, would return the closest hit
object. Based on our findings in Section 5, we find that an
attacker can construct a completely invisible object that
captures the user’s input. Furthermore, the 3D nature of the
AR virtual world lets the attacker envelop the user within
this invisible ’object cage,’ causing the invisible object to
intercept, initially and always, the user’s interactions. The
preconditions for this attack are (1) the location of the
targeted object, and (2) the ability to generate virtual content
interleaved with the victim’s content.

Figure 3 illustrates this attack. The victim/user launches
the application and intends to select an AR object ① using a
hand ray as the input mechanism. However, the attacker can
either overlay an invisible object ② on the targetted AR object
to block user from interacting with it ③. Furthermore, the at-
tacker can overlay a large invisible object ④ that encapsulates
the user such that the user is always physically inside of the
object. The user’s interaction towards any AR object is thus
blocked ⑤ regardless of their movements within the physical
space.

4.4 Input Forgery: Leveraging Synthetic User
Input

Attack Motivation: Impersonate User Interaction. Similar
to the motivation in the clickjacking attack, here the adver-
sary’s goal is to maximize advertisement engagement. The
attacker places an advertisement object outside of the user’s

(a) User’s view of the victim app.

(b) Demonstration of the object-in-the-middle attack.

Figure 5: Object-in-the-middle attack on Oculus. ① The
interface for authentication. ② The logger for the execution
result. ③ The invisible object the attacker places over the pin
pad object. ④ The blue arrow suggests the direction of the
synthetic input to trigger the pin pad object.

view and generates synthetic user input to increase the number
of ad interactions. Placing it outside of the user’s peripheral is
not a requirement though it will make the attack more stealthy.

Attack Design. We implement this attack in Pixel 5 using the
ARCore SDK. The attack insight here is that a programmable
click can interact with objects outside of user’s view by ex-
ploring the limited display of field-of-view. The precondition
for this attack is the execution of synthetic input.

Figure 4 illustrates the attack. When the victim/user
launches the application, the malicious application developer
will place the third-party ad ① in the user’s view. When the
ads’ location is outside of the user’s view ②, the attacker will
then generate synthetic input ③ to trigger interactions on the
ads, increasing its interaction count, and later charging the
respective advertisers for this inflated number of ad views.

4.5 Intercepting User Inputs: Combining In-
visible Objects and Synthetic User Input

Attack Motivation: Hijack User’s Interaction. Object-in-
the-middle is an attack in which a third party object gains ac-
cess to (or “intercepts”) the communication between two other
objects. As AR applications continue to grow in domains
beyond entertainment, users may enter sensitive information—
such as PIN codes, passwords, or private messages—by inter-
acting with a virtual keyboard rendered in the AR space. Each
virtual key is a collider that provides collision detection.
When the user either presses a key or casts a ray, the collider
detects the intersection and outputs the corresponding value.

Prior work has shown the possibility to sniff user text input
through various side-channels [69, 86]. Here, we demonstrate
in AR that not only can an attacker surreptitiously steal the
user’s input, but it can also impersonate the user or even mod-
ify the original input, similar to a man-in-the-middle attack.

Attack Design. We implement this attack in the passthrough
mode of Oculus Quest 2. Our attack intuitions here are
twofold. First, similar to the denial-of-service attack, it is
possible to block the user’s original input by overlaying a
transparent object on top of the keyboard. Second, we can
cast a synthetic ray to impersonate the user’s interaction since
the current platform does not provide input provenance.

Given our observations, we implemented an object-in-the-
middle attack on Oculus. The preconditions for this attack
are (1) the location of the targeted object, (2) the ability to
generate virtual content interleaved with the victim’s content,
and (3) the execution of synthetic input.

Figure 5 illustrates the attack. When the victim/user
launches the application, it shows a mock authentication in-
terface ①, part of the main app that consists of a pin pad for
the user to enter their password. We present a logger ② to
illustrate the efficacy of the attack. A malicious third-party
component places several transparent meshes in front of the
pin pad entity to intercept the user’s input ③. Once the trans-
parent meshes detect the user’s interaction, the malicious
component casts a synthetic input ④ to the pin pad, passing
the user’s input on to its intended destination.

The result is that the attacker has intercepted the password,
but the user has not noticed anything amiss. Following the
same attack logic, the attacker could also modify the user’s
input if needed since they can arbitrarily define the synthetic
input destination.

4.6 Object Erasure: Leveraging Invisible
Meshes

Attack Motivation: Erase Other AR Objects. Echoing our
attack focus, here we consider a scenario where the attacker
aims to interfere with another party’s virtual content by ma-

(a) User’s view of victim app.

(b) Demonstration of the object erasure attack.

Figure 6: Object erasure attack on WebXR. (①,② Two
competing advertisements. ③ Attempt to erase the competitor
advertisement using transparent mesh. (We partially offset
the invisible object for attack visibility.

nipulating targeted objects. Motivations for such actions can
vary greatly. For instance, one potential objective could be to
erase a competitor’s AR content, such as advertisements or
promotional material. Another might be the desire to manipu-
late the user’s perception: by altering or erasing certain AR
objects, e.g., vital information or safety warnings, an attacker
could significantly distort the user’s view of reality [43, 61].
Such manipulation of AR content could also be deployed as
a form of digital vandalism [57], comparable to defacing a
physical sign or billboard.

Attack Design. We implement this attack in the
Chrome browser using the WebXR SDK and
Three.js library. When we assign a fully transpar-
ent mesh (png format) as the material of an AR
object using new THREE.MeshBasicMaterial(map:
THREE.TextureLoader().load(’transparent.png’)),
we find that not only does the AR object become fully
invisible, but it also "erases" the rendering of other AR
objects positioned behind it. The preconditions for this attack
are (1) the location of the targeted object and (2) the ability to
generate virtual content interleaved with the victim’s content.

Figure 6 illustrates the attack. When the user launches the
application, it presents two competing third-party ad libraries
① and ②. Code from one mock ad library then places a trans-
parent mesh in the same space as the competing advertisement
to erase it ③.

Figure 7: Researchers conducting the experiments.

5 Empirical Investigation

Stepping back from individual proof-of-concept attacks, we
now turn to a more systematic investigation of current AR
platforms. We evaluate how five leading AR platforms — AR-
Core (Google), ARKit (Apple), Oculus (Meta), Hololens (Mi-
crosoft), and WebXR (browser) — implement the AR UI prop-
erties identified in Section 3. In this section, we first describe
the infrastructure for our experiments, detail the platforms
and configurations we used, and then present results of exper-
iments. Finally, we discuss the security implications of our
results (Section 5.4).

5.1 Overall Experiment Infrastructure
We systematically developed a repeatable set of experiments
for each property that we identified in the previous section
(i.e., Same Space, Invisibility, and Synthetic Input) . The ex-
periments we conducted varied depending on the evaluation
metrics for that property.

A human experimenter ran each experiment and another
researcher recorded the experiment results, as demonstrated
in Figure 7. Each experiment follows the procedure described
in Figure 8. The central component of each experiment is a
harness launched at the procedure’s beginning. Correspond-
ing to our threat model, each experiment further involves two
AR application components, ComponentA and ComponentB,
representing two pieces of code from different entities (e.g., a
main app and an embedded third-party library).

With the experimenter’s input, the harness (1) launches
ComponentA, then (after the experimenter made necessary
observations) (2) launches ComponentB, and finally (3) steps
through the experiment in four different locations, which we
annotated as Location N, S, E, W, interacting with the AR
object in different spatial locations and providing input to the
harness to proceed.

To account for potential non-determinism, we conducted
each test case experiment M = 5 times. Further, each test can
have up to N = 5 sub-experiments. Details about ComponentA
and ComponentB depend on the nature of each test case.

Experimenter’s Procedure(M,N)
For j = 1 to M do

Launch Harness(N)
Launch and provided any user input to start experiment
Launch and provided any user input to start

ComponentA.launch()
Launch and provided any user input to start

ComponentB.launch()
For k = 1 to N do

click “Next” button
Start ComponentA.next()
Start ComponentB.next()
Perform sub-experiment observations and interactions

Exit Harness(N)

Figure 8: The parameter M denotes the number of experiments
that the experimenter (a person) should run. Throughout the
procedure’s pseudocode is the assumption that the experi-
menter records detailed notes of observations during each
experiment.

5.2 Experiment Platforms and Configurations

We describe here the specific experimental configurations and
versions we used for each platform. An experimental setup
requires not only a choice of platform (e.g., ARKit) but also
additional choices for the entire tech stack (e.g., which SDK
to use). Different choices for the full tech stack might have
led to different experimental results, and we will release our
experiment code to allow future work to adapt it for other con-
texts — including future technologies, like Apple’s recently
announced Vision Pro headset [3].

ARCore. ARCore [5] is Google’s Android core SDK for
augmented reality. We built our test cases using ARCore
v1.32.0 [5] for AR functionalities and Sceneform SDK [12]
for 3D content rendering (version 1.20.5). The test cases were
implemented in Java and tested on the Pixel 5a.

ARKit. ARKit [9] is Apple’s main AR SDK and includes
multiple iOS AR frameworks, such as RealityKit [1] and
RoomPlan [2]. We built our test cases using ARKit and Reali-
tyKit for necessary AR functionalities. The three test cases
were implemented mainly in Swift and tested on the iPhone
13 Pro.

Oculus. We use Quest 2 with the experimental Passthrough
API [40] and spatial anchors to enable an AR experience. We
built our test cases using Oculus Integration SDK v44.0 [19].
They were implemented mainly in C# (Unity) and tested on
the Oculus Quest 2.

WebXR. The WebXR Device API [28], led by the W3C
Immersive Web Community Group, provides a uniform ab-
straction layer to host immersive web content. We built our
test cases using the WebXR API-20220601 [29] for necessary
AR functionalities and Three.js [23] for 3D content rendering.

The three test cases were implemented mainly in JavaScript
and tested on the Chrome Browser.

Hololens. We deployed a Hololens 2 application using
the Mixed Reality Toolkit (MRTK) 2.0 [30] and Unity
2021.3.16f1 [24]. MRTK is an authorized Microsoft project
that provides components to facilitate MR development in
Unity. We employed numerous features of MRTK in our test
cases, including spatial anchors, gesture recognition, and ob-
ject manipulation.

5.3 Experiments and Results
We now examine our experiments and results, per property,
based on the evaluation metrics presented in Section 3. Table 1
highlights all our results.

5.3.1 Same Space Experiments and Results

Experiment Design. In the SameSpace experiment, Com-
ponentA creates a virtual Cube1 object at one coordinate in
the physical world, and ComponentB creates a second Cube2
placed in the same physical location. Both Cubes use the
same spatial anchor, which is a specific 6-degree-of-freedom
pose (position and orientation) of the physical world, as the
physical location reference and are registered with a user input
handler. The experimenter moves to four different locations
(noted as North (N), South (S), East (E), and West (W)). At
each location, the experimenter observes the rendering se-
quence of the overlapping cubes and interacts with the Cubes
by sending a virtual ray or tapping on the overlapping region
to register the returning result. To verify our code is operating
correctly, each Component displays additional cubes that the
experimenter observes and verifies as part of the procedure.
We omit further details about such checks because in all cases
the checks were made and passed.

From these activities, the experimenter evaluates the met-
rics specified in Section 3. Specifically, the experimenter ob-
serves: which cube is visible (based on which color is visible),
which cube takes user input (based on log output from the
cube’s input handler), and whether these observations are
consistent across multiple conditions and trials.

Experiment Results. The top section of Table 1 presents the
results. We find that platforms are inconsistent about which
object is visible, which object receives input, and whether the
visible object is the one receiving input. Significantly, these
inconsistencies appear between platforms, across multiple
trials of a single platform, and even within a single trial (i.e.,
flickering cubes). For example, for ARKit, Cube2 is always
rendered, but Cube1 receives the user input; the opposite is
true for HoloLens. For WebXR, there was significant incon-
sistency across multiple experiments as the overlapping Cube
flickers and either cube could register the user’s input. AR-
Core flickers in a slower way, but all of the user’s input goes

Property Condition Metrics ARCore ARKit Hololens Oculus WebXR

Sa
m

e
Sp

ac
e

Location N Rendering Order Unstable 2 1 Unstable* Unstable

Interaction Order 2 1 2 Unstable* Unstable

Location S Rendering Order Unstable 2 1 Unstable* Unstable

Interaction Order 2 1 2 Unstable* Unstable

Location E Rendering Order Unstable 2 1 Unstable* Unstable

Interaction Order 2 1 2 Unstable* Unstable

Location W Rendering Order Unstable 2 1 Unstable* Unstable

Interaction Order 2 1 2 Unstable* Unstable

Rendering Flicker-Free
Rendering Consistency
Interaction Consistency
Rendering-Interaction
Consistency

In
vi

si
bi

lit
y

Alpha Value = 0 Create Invisible Object

Invisible User Interaction N/A N/A N/A

Disable Renderer Create Invisible Object

Invisible User Interaction

Customized Material Create Invisible Object

Invisible User Interaction N/A N/A N/A

Null Material Create Invisible Object

Invisible User Interaction N/A N/A N/A N/A

Composes as Expected
w/ Virtual Objects

Sy
nt

he
tic

In
pu

t

Inside Field-of-view Create Synthetic Input
Invisible Synthetic Input

Outside Field-of-view Create Synthetic Input
Invisible Synthetic Input

Input Provenance

Table 1: Overview of experiment results. Filled circles indicate the metric is satisfied, and empty circles indicate they are not. For
the Same Space experiment, circled 1 indicates that the object is created by the first (victim) principal; circled 2 indicates that the
object is created by the second (adversarial) principal. “Unstable” means that the results are inconsistent during a single trial.
“Unstable*” means that the results are inconsistent between multiple trials.

into Cube2.
We find that Oculus is the only platform that handles

rendering-interaction consistently, with a caveat that 15% (15
out of 100) of the trials fail to maintain this consistency. While
Oculus prevents flickering from the overlapping Cube, we
find that the rendering sequence and the corresponding in-
teraction sequence flip as the user moves to the next testing
location. In addition, we also notice an inconsistency across
multiple trails in terms of which Cube appears on top.

These findings suggest that current AR platforms have not
systematically considered the Same Space property or these
types of corner cases.

5.3.2 Invisibility Experiments and Results

Experiment Design. In the Invisibilityexperiment, Compo-
nentA creates a visible Cube1 object at one coordinate, and
ComponentB creates a visible Cube2 in front of Cube1.
Cube2 is significantly larger than Cube1. The harness asks
the experimenter to confirm if Cube2 completely occludes
Cube1 and, upon confirmation, ComponentB deletes Cube2
and creates a new invisible Cube2’ at the same location and
with the same geometry; it does this by attempting four dif-
ferent mechanisms: (1) setting the alpha value to zero, (2)
providing a null material, (3) disabling rendering, and (4) up-
loading a transparent texture as the object’s material. Both
Cubes are registered with a user input handler. The process
with Cube2 size and placement verification and then Cube2’
instantiation ensures that input makes sure any interaction
will go into Cube2’ first. The experimenter then evaluates the
metrics from Section 3, observing whether the invisible cube
is fully invisible and dispatching user input to the invisible
cube to observe if its input handler is triggered.

Experiment Results. The middle section of Table 1 presents
the results. We find that all five AR platforms can create invis-
ible objects that take the user’s input. However, the detailed
implementation condition for each platform differs slightly.
For example, by setting Cube2’s alpha value to zero, ARKit
and Oculus both generate a completely transparent cube while
registering the user’s input. When disabling the rendering,
ARCore and ARKit completely occlude Cube2’, meaning that
the cube can neither be seen nor receive input; Cube2’ in
WebXR, Hololens, and Oculus instead take input while being
fully invisible. For Hololens and Oculus, this occurs because
the rendering and collision engines are separate, which means
objects can still possess physical characteristics without being
rendered.

When uploading the customized transparent texture, we
find that ARCore and WebXR produce a fully invisible Cube2
that takes input, while the other three platforms generate a
slightly visible Cube2. All platforms except WebXR handle
the null material edge cases by generating a solid color Cube2.
Surprisingly, we found that the AR object generated by one
principal in WebXR can affect the appearance of other AR

objects. Specifically, whenCube2’ is created with an uploaded
transparent texture, we observe that the visible object located
behind the invisible object (based on the user’s viewing posi-
tion) seems to disappear.

5.3.3 Synthetic Input Experiments and Results

Experiment Design. In the Synthetic Input experiment, Com-
ponentA creates a virtual Cube1 object at one coordinate with
an input handler. When the experimenter presses a button,
ComponentB creates synthetic user input — in the form of
a simulated raycast — to interact in the direction of Cube1.
The direction of the simulated raycast is calculated by retriev-
ing the location of Cube1 and generating the corresponding
direction vector. In addition, we test if input visualization
is required to generate synthetic input. The experimenter ob-
serves whether the input handler of Cube1 was triggered. This
experiment is repeated with the target object (Cube1) inside
the user’s field of view and outside the user’s field of view
(e.g., behind the user).

Experiment Results. The bottom section of Table 1 presents
the results. We find that all platforms allow synthetic user
input, which is moreover invisible and can interact with the
target AR object (Cube1). One consistent observation across
all platforms is the absence of effective input provenance veri-
fication. This is a significant shortfall as the raycast API does
not supply sufficient information to distinguish between gen-
uine and synthetic user input. In addition, we discovered that
for synthetic user input to be functional, the target objects need
not be within the user’s field of view. This leverages users’
limited visual awareness when they are physically present
within the 360-degree immersive AR user interface when
the AR objects themselves remain rendered within the scene,
exploiting this gap in user perception.

5.4 Security Implications

Returning to our proof-of-concept attacks from Section 4, we
can now directly connect our empirical evaluation results with
those attacks. In Table 2, we connect each attack to its precon-
ditions — that is, to the necessary experiment result(s) that
would enable the attack. For example, our denial-of-service
attack requires that a platform be able to create invisible cubes
and that those cubes be able to receive user input (i.e., “Invis-
ible Cube Input Registration: ”). Based on our experiment
results in Table 1 and each of the attack preconditions, we
can thus summarize in Table 2 which of our tested SDKs are
vulnerable to which attack. We demonstrate all five proof-of-
concept attacks in current AR platforms in Section 4.

Proposed Attack Property Attack Precondition ARCore ARKit Hololens Oculus WebXR

Denial-of-service
Invisibility Create Invisible Object:

8 8 8 8 8Invisibility Invisible User Interaction:

Object Erasure Invisibility Composes as Expected w/ Virtual Obj.: 8

Input Forgery Synthetic Input Input Provenance: 8 8 8 8 8

Clickjacking
Same Space Interaction Consistency:

8 8 8*
Same Space Rendering-Interaction Consistency:

Object-in-the- Middle
Invisibility Invisible Interaction:

8 8 8 8 8Synthetic Input Input Provenance:
Synthetic Input Invisible Synthetic Input:

Table 2: Analysis of which attacks each platform (in our testing configuration) enables.8 indicates this attack is possible to
implement based on our experimental results; * indicates the attack might fail due to the AR platform’s inconsistent behavior.

6 Discussion

As with all emerging technologies — from smartphones (in
the early 2000s) to computerized automobiles (also in the
early 2000s) — many defensive strategies can be adopted
from earlier technologies and new challenges must be over-
come. We view this paper as one component in the evolution
of computer security and privacy for AR systems. While it
is impossible to predict the future, we reflect on our work’s
possible place in this evolution here.

6.1 Problem Formulation

There are often vulnerabilities in emerging technologies that,
from a purely abstract technical perspective, are unsurprising.
Consider, for example, the discovery of strcpy vulnerabili-
ties in automobiles in 2011 [41], over two decades after Aleph
One’s classic “Smashing the Stack for Fun and Profit” [72].
The contribution of such results is not in finding yet another
vulnerability but in assessing how an emerging technology —
one that has not yet seen significant security analysis — might
be vulnerable. We consider our work — our identification of
properties to assess as well as our exploration of case study
attacks — to be of this lineage. Moreover, we consider not
only how AR systems might be vulnerable, but we empiri-
cally find that the designs of all five instantiations of the AR
technologies that we study do expose themselves to attacks.

Today’s AR systems may not need to be secure against
the types of attacks we study. They are still emerging and
predominantly single-principal. But, under the assumptions
that future systems might be multi-principal, more widely
used, and make design decisions that often persist in future
technologies even as the threat landscape changes, we believe
that it is imperative for AR platform designers to consider
mitigation strategies now.

6.2 Knowledge of Defenses for 2D UIs Will
Help

Applying existing (known) defensive strategies from other
domains is a natural and appropriate first line of defense
when considering newly discovered vulnerabilities in emerg-
ing technologies. For example, in the automotive domain,
early research suggested the use of (even then) standard de-
fenses, such as application-level authentication and encryption
and the avoidance of unsafe code like strcpy [41]. Likewise,
there is already an existing wealth of knowledge on UI secu-
rity for 2D interfaces (desktop, mobile, web), and we encour-
age the adoption (or extension) of those defensive techniques
to AR systems.

For example, an invariant that can provide resilience to
clickjacking on the web is the following: a user can interact
with a web object if and only if the web object is visible and
has been visible for at least a minimum amount of time [54].
That defensive strategy, if implemented and fully instantiated,
would serve to strengthen AR systems. However, is it possible
to fully instantiate that defensive strategy? We elaborate on
this question below.

Other known techniques that could be adapted for AR UI
security — once the need to adapt them has been identified, as
through our work — include: (1) input provenance to help the
application distinguish real user input from synthetic input, as
well as synthetic input from different sources [11, 49]; (2) “Z-
fighting” (same space) mitigations for same space conflicts
(such as slightly offsetting multiple objects [21] or higher
resolution buffers [58]); and (3) the isolation of different
application components (i.e., a “same origin policy” for AR
applications).

However, applying these techniques for AR may not always
be straightforward or sufficient, as we elaborate in the next
subsection.

6.3 Knowledge of Defenses for 2D UIs Is Not
Sufficient

Though it is impossible to fully predict all the challenges with
future 3D interfaces, we observe several potential differences
here.

For example, consider known defenses for clickjacking.
From our assessment of 3D gaming environments, there are
reasons for which developers might intentionally create in-
visible yet interactable objects. Thus, the anti-clickjacking
invariant mentioned above may not be directly applicable in
all immersive 3D environments and use cases. Further, unlike
desktop and web environments, where one object is clearly
“on top,” the visibility of an object might be impacted by the
position of the viewer, who could be moving around the ob-
jects, or the objects could be moving around the viewer. This
“on top” nature becomes even more complicated if the same
set of objects are being viewed by multiple people (different
viewers of the same scene might see different objects on top).
Certainly, computational methods could be used to determine
which object is on top of each user, though platform designers
must account for the different architecture of AR systems and
the different roles of the physics and rendering engines. Even
then, some invariants, such as minimum time of visibility
before being clickable, may be incompatible with some use
cases, like playing a game with fast-moving objects while
simultaneously using another leisure application.

As another example, consider that our attacks depend on a
threat model in which multiple application components — or
multiple applications — are mutually distrusting. While cur-
rent AR platforms do not (yet) support rich multi-application
interactions (except with applications confined to 2D win-
dows), we can anticipate that future platforms will evolve
to fully support two (or more) immersive augmented reality
applications at the same time: for example, walking directions
interspersed with game content from another application. Se-
curely managing the integration of content from multiple
applications in the AR context, or even isolating content from
different sources within the same application (like Site Iso-
lation for iframes on the web [75]), will be a large technical
and research challenge [60].

6.4 Potential Defensive Techniques

Work has already begun to emerge within the security re-
search community that provides potential defensive directions
against the issues we raise in this paper. For example, Lee et
al. [63] introduced AdCube, a defensive system to counter
several WebXR attacks. The attacks they consider have some
similarity (and some differences) with the ones we discuss
here. The blind spot tracking attack from AdCube places
the ad entity outside of the user’s peripheral to increase the
number of ad appearances, while the input forgery attack in
this paper maximizes the number of ad clicks through syn-

thetic input. The cursor-jacking attacks from AdCube exploit
the user’s perception to hijack authentic clicks whereas our
clickjacking attack utilizes the rendering-interaction incon-
sistency of virtual objects placed in the same space. Despite
these differences, the AdCube idea of confining untrustwor-
thy third-party libraries and preventing them from placing
virtual objects could mitigate attacks like those we explore as
well: specifically, attacks that rely on the ability to generate
virtual content interleaved with the victim’s content. Future
researchers could build upon AdCube and our findings to de-
velop a cross-platform AR defensive toolkit. More generally,
future work should also explore other possible approaches
that isolate UI components from multiple principals in future
AR platforms.

Another line of work that may contribute to defensive di-
rections focused on automated evaluation in AR/VR. Wang
et al. [94] defined and used interactable properties of vir-
tual objects to perform automatic testing in the VR environ-
ment. Lehman et al. [65] provided automated feedback to help
with UX issues debugging. Our methodology is inspired by
property-based testing (PBT), a testing technique that lever-
ages the specification of generic properties as the driving
force behind the testing process, ensuring that the system un-
der test satisfies these properties [51]. There is rich literature
on applying PBT in programming languages [45, 53] and 2D
rendering engines [68]. Building on top of our findings, fu-
ture work could automatically generate test cases analyzing
specific metrics — for example, rendering-interaction consis-
tency across multiple conditions, since our results show that
the platform may have inconsistent behavior in different sce-
narios.

6.5 Stepping Back

The preceding observations do not imply that the types of
attacks we describe here are insurmountable. Rather, this dis-
cussion reflects our view of how this work might fit into the
broader evolution of security and privacy for AR systems. At
the highest level, and returning to Section 6.1, we believe that
our first and most important contribution is the knowledge
of what vulnerabilities might exist and how they presently
manifest in different systems. With that knowledge, it is pos-
sible to defend systems by leveraging existing knowledge
from 2D contexts (Section 6.2), by creating new knowledge
(Section 6.3), and by extending existing defensive directions
from AR contexts (Section 6.4). Toward the creation of new
knowledge and new defenses, a critical step will be the assess-
ment of what types of applications and use cases the designers
intend to support and the management of tensions that arise
when the exact feature exploited by an adversarial UI applica-
tion is also needed by a desirable application.

7 Additional Related Work

Finally, we connect to additional related work in the broader
context of AR platform analysis and 2D UI security that was
not previously discussed.

Empirical Analysis of AR Platforms. As AR platforms
continue to emerge and develop, recent work has compared
and evaluated AR platforms according to other criteria as
well. Scargill et al. [83] investigate AR object placement
stability in mobile AR platforms. Slocum et al. [85] measure
the spatial inconsistency when placing virtual objects in the
real world on ARCore, while Lee et al. [62, 76] analyze the
AR object placement deviation on WebXR. Other works have
proposed functionality metrics, such as general performance
(CPU/memory use) [71] body movement and marker-based
tracking [34, 91], accessibility and ease-of-use [89], lighting
estimation [73], and plane and feature point detection [73]
that allow direct comparison across multiple AR platforms.

2D UI Security. UI security in 2D has been well-studied. For
example, early work in this space included secure windowing
systems like Trusted X [48] and EROS [84]. More recently, a
line of work considered UI security requirements and threats
on Android and iOS [35,38,42,64,77]. Luo et al. [66] provide
a thorough analysis of UI vulnerabilities in mobile browsers.
As mentioned, there is also significant prior work mitigat-
ing clickjacking attacks on the web and in other contexts
(e.g., [54]). Our work takes the next step in the broader space
of UI-level security, studying emerging AR platforms.

8 Conclusion

We presented an empirical analysis of five current AR plat-
forms, systematically investigating how they handle three UI
security related properties: Same Space, Invisibility, and Syn-
thetic Input. We demonstrated five proof-of-concept attacks —
one implemented for each of our test platforms — that lever-
age different design choices in the context of these AR UI
security properties. We found that these current AR platforms,
including Apple’s ARKit, Google’s ARCore, Meta’s Ocu-
lus, Microsoft’s Hololens, and WebXR, are all designed and
implemented in ways that enable our AR UI attacks to suc-
ceed. Our findings lay the groundwork for future research and
design work to consider and address AR UI security to miti-
gate the risks of such attacks, either through directly applying
past lessons from 2D UI security or by grappling with new,
AR-specific challenges and tradeoffs.

Along with this paper, all code for our experiments and
the video demonstrations are available online at https://
ar-sec.cs.washington.edu/ar_ui/ to support future
researchers in extending our analyses to other and future AR
platforms, including the Apple Vision Pro headset that was
announced on the day before this paper’s submission.

Acknowledgments

We would like to thank our shepherd and the anonymous
reviewers for their valuable feedback. We would also like
to thank the following people for their feedback: Michael
Flanders, Alex Gantman, Gregor Haas, Rachel Hong, Sandy
Kaplan, Inna Wanyin Lin, Rachel McAmis, Kentrell Owens,
and Yuan Tian. This work was supported in part by the Na-
tional Science Foundation under Award #1651230, as well as
by awards from Cisco, Google, and Qualcomm.

References

[1] Apple RealityKit. https://developer.apple.com/docu
mentation/realitykit/.

[2] Apple RoomPlan. https://developer.apple.com/augm
ented-reality/roomplan/.

[3] Apple Vision Pro is Apple’s new AR headset. https://ww
w.theverge.com/2023/6/5/23738968/apple-vision-p
ro-ar-headset-features-specs-price-release-dat
e-wwdc-2023.

[4] AR Advertising Market Insights. https://www.statista
.com/outlook/amo/ar-vr/ar-advertising/united-s
tates.

[5] ARCore. https://developers.google.com/ar/devel
op.

[6] ARCore – Depth adds realism. https://developers.goo
gle.com/ar/develop/depth.

[7] ARCore – Geospatial. https://developers.google.co
m/ar/develop/geospatial.

[8] ARCore – Light Estimation. https://developers.googl
e.com/ar/develop/lighting-estimation.

[9] ARKit. https://developer.apple.com/augmented-r
eality/arkit/.

[10] Babylon.js. https://www.babylonjs.com/.

[11] Event: isTrusted property. https://developer.mozilla.
org/en-US/docs/Web/API/Event/isTrusted.

[12] Google Sceneform. https://developers.google.com/
sceneform/develop.

[13] Headers/X-Frame-Options. https://developer.mozilla.
org/en-US/docs/Web/HTTP/Headers/X-Frame-Optio
ns.

[14] Hololens – Scene understanding. https://learn.micros
oft.com/en-us/windows/mixed-reality/develop/u
nity/scene-understanding-SDK.

[15] Meta Quest 3. https://about.fb.com/news/2023/06/
meta-quest-3-coming-this-fall/.

[16] Microsoft hololens 2. https://www.microsoft.com/en-u
s/hololens.

[17] Nreal Light AR Glasses. https://www.verizon.com/pr
oducts/nreal-light-ar-glasses.

https://ar-sec.cs.washington.edu/ar_ui/
https://ar-sec.cs.washington.edu/ar_ui/
https://developer.apple.com/documentation/realitykit/
https://developer.apple.com/documentation/realitykit/
https://developer.apple.com/augmented-reality/roomplan/
https://developer.apple.com/augmented-reality/roomplan/
https://www.theverge.com/2023/6/5/23738968/apple-vision-pro-ar-headset-features-specs-price-release-date-wwdc-2023
https://www.theverge.com/2023/6/5/23738968/apple-vision-pro-ar-headset-features-specs-price-release-date-wwdc-2023
https://www.theverge.com/2023/6/5/23738968/apple-vision-pro-ar-headset-features-specs-price-release-date-wwdc-2023
https://www.theverge.com/2023/6/5/23738968/apple-vision-pro-ar-headset-features-specs-price-release-date-wwdc-2023
https://www.statista.com/outlook/amo/ar-vr/ar-advertising/united-states
https://www.statista.com/outlook/amo/ar-vr/ar-advertising/united-states
https://www.statista.com/outlook/amo/ar-vr/ar-advertising/united-states
https://developers.google.com/ar/develop
https://developers.google.com/ar/develop
https://developers.google.com/ar/develop/depth
https://developers.google.com/ar/develop/depth
https://developers.google.com/ar/develop/geospatial
https://developers.google.com/ar/develop/geospatial
https://developers.google.com/ar/develop/lighting-estimation
https://developers.google.com/ar/develop/lighting-estimation
https://developer.apple.com/augmented-reality/arkit/
https://developer.apple.com/augmented-reality/arkit/
https://www.babylonjs.com/
https://developer.mozilla.org/en-US/docs/Web/API/Event/isTrusted
https://developer.mozilla.org/en-US/docs/Web/API/Event/isTrusted
https://developers.google.com/sceneform/develop
https://developers.google.com/sceneform/develop
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/unity/scene-understanding-SDK
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/unity/scene-understanding-SDK
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/unity/scene-understanding-SDK
https://about.fb.com/news/2023/06/meta-quest-3-coming-this-fall/
https://about.fb.com/news/2023/06/meta-quest-3-coming-this-fall/
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.verizon.com/products/nreal-light-ar-glasses
https://www.verizon.com/products/nreal-light-ar-glasses

[18] Oculus – Spatial Anchor. https://developer.oculus.c
om/documentation/unity/unity-spatial-anchors-o
verview/.

[19] Oculus Integration with Unity. https://assetstore.uni
ty.com/packages/tools/integration/oculus-integ
ration-82022.

[20] Oculus Passthrough. https://developer.oculus.com/d
ocumentation/unity/unity-passthrough/.

[21] Shaderlab command: Offset. https://docs.unity3d.com
/2021.1/Documentation/Manual/SL-Offset.html.

[22] Spectacles from Snapchat. https://www.spectacles.com
/.

[23] Three.js. https://threejs.org/.

[24] Unity 2021.3.16. https://unity.com/releases/edito
r/whats-new/2021.3.16l.

[25] Unity AR Foundation. https://docs.unity3d.com/Pac
kages/com.unity.xr.arfoundation@2.2/manual/ind
ex.html.

[26] Unreal Game Engine. https://www.unrealengine.com
/en-US.

[27] User Interface Security and the Visibility API – Privacy Con-
sideration. https://www.w3.org/TR/UISecurity/#priv
acy-considerations.

[28] WebXR Device API. https://www.w3.org/TR/webxr/.

[29] WebXR Device API Version 20220601. https://www.w3.o
rg/TR/2022/CRD-webxr-20220601/.

[30] What is Mixed Reality Toolkit 2? https://learn.micros
oft.com/en-us/windows/mixed-reality/mrtk-unity
/mrtk2/.

[31] What Is The Invisible Obstacle In Pokémon Go? https:
//www.ginx.tv/en/pokemon-go/invisible-obstacle.

[32] Surin Ahn, Maria Gorlatova, Parinaz Naghizadeh, Mung Chi-
ang, and Prateek Mittal. Adaptive fog-based output secu-
rity for augmented reality. In Proceedings of the Morning
Workshop on Virtual Reality and Augmented Reality Network,
pages 1–6, 2018.

[33] Devdatta Akhawe, Warren He, Zhiwei Li, Reza Moazzezi, and
Dawn Song. Clickjacking revisited: A perceptual view of UI
security. In 8th USENIX Workshop on Offensive Technologies
WOOT 14), 2014.

[34] Dhiraj Amin and Sharvari Govilkar. Comparative study of
augmented reality SDKs. International Journal on Computa-
tional Science & Applications, 5(1):11–26, 2015.

[35] Simone Aonzo, Alessio Merlo, Giulio Tavella, and Yanick
Fratantonio. Phishing attacks on modern android. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 1788–1801, 2018.

[36] Sajjad Arshad, Amin Kharraz, and William Robertson. In-
clude me out: In-browser detection of malicious third-party
content inclusions. In Financial Cryptography and Data Secu-
rity: 20th International Conference, FC 2016, Christ Church,
Barbados, February 22–26, 2016, Revised Selected Papers
20, pages 441–459. Springer, 2017.

[37] Marco Balduzzi, Manuel Egele, Engin Kirda, Davide
Balzarotti, and Christopher Kruegel. A solution for the au-
tomated detection of clickjacking attacks. In Proceedings
of the 5th ACM Symposium on Information, Computer and
Communications Security, pages 135–144, 2010.

[38] Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick
Fratantonio, Christopher Kruegel, and Giovanni Vigna. What
the app is that? deception and countermeasures in the android
user interface. In 2015 IEEE Symposium on Security and
Privacy, pages 931–948. IEEE, 2015.

[39] Christoph Bichlmeier, Felix Wimmer, Sandro Michael Hein-
ing, and Nassir Navab. Contextual anatomic mimesis hy-
brid in-situ visualization method for improving multi-sensory
depth perception in medical augmented reality. In 2007 6th
IEEE and ACM international symposium on mixed and aug-
mented reality, pages 129–138. IEEE, 2007.

[40] Gaurav Chaurasia, Arthur Nieuwoudt, Alexandru-Eugen
Ichim, Richard Szeliski, and Alexander Sorkine-Hornung.
Passthrough+ real-time stereoscopic view synthesis for mo-
bile mixed reality. Proceedings of the ACM on Computer
Graphics and Interactive Techniques, 3(1):1–17, 2020.

[41] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny
Anderson, Hovav Shacham, Stefan Savage, Karl Koscher,
Alexei Czeskis, Franziska Roesner, and Tadayoshi Kohno.
Comprehensive experimental analyses of automotive attack
surfaces. In 20th USENIX security symposium (USENIX
Security 11), 2011.

[42] Qi Alfred Chen, Zhiyun Qian, and Z Morley Mao. Peeking
into your app without actually seeing it: UI state inference and
novel android attacks. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 1037–1052, 2014.

[43] Kaiming Cheng, Jeffery F Tian, Tadayoshi Kohno, and
Franziska Roesner. Exploring user reactions and mental mod-
els towards perceptual manipulation attacks in mixed reality.
In USENIX Security, volume 18, 2023.

[44] Kang Leng Chiew, Kelvin Sheng Chek Yong, and Choon Lin
Tan. A survey of phishing attacks: Their types, vectors and
technical approaches. Expert Systems with Applications,
106:1–20, 2018.

[45] Koen Claessen and John Hughes. Quickcheck: a lightweight
tool for random testing of haskell programs. In Proceed-
ings of the fifth ACM SIGPLAN international conference on
Functional programming, pages 268–279, 2000.

[46] Jaybie A De Guzman, Kanchana Thilakarathna, and Aruna
Seneviratne. Security and privacy approaches in mixed real-
ity: A literature survey. ACM Computing Surveys (CSUR),
52(6):1–37, 2019.

[47] Ruofei Du, Eric Turner, Maksym Dzitsiuk, Luca Prasso, Ivo
Duarte, Jason Dourgarian, Joao Afonso, Jose Pascoal, Josh
Gladstone, Nuno Cruces, et al. DepthLab: Real-time 3D
interaction with depth maps for mobile augmented reality. In
Proceedings of the 33rd Annual ACM Symposium on User
Interface Software and Technology, pages 829–843, 2020.

[48] J. Epstein, J. McHugh, R. Pascale, C. Martin, D. Rothnie,
H. Orman, A. Marmor-Squires, M. Branstad, and B. Danner.

https://developer.oculus.com/documentation/unity/unity-spatial-anchors-overview/
https://developer.oculus.com/documentation/unity/unity-spatial-anchors-overview/
https://developer.oculus.com/documentation/unity/unity-spatial-anchors-overview/
https://assetstore.unity.com/packages/tools/integration/oculus-integration-82022
https://assetstore.unity.com/packages/tools/integration/oculus-integration-82022
https://assetstore.unity.com/packages/tools/integration/oculus-integration-82022
https://developer.oculus.com/documentation/unity/unity-passthrough/
https://developer.oculus.com/documentation/unity/unity-passthrough/
https://docs.unity3d.com/2021.1/Documentation/Manual/SL-Offset.html
https://docs.unity3d.com/2021.1/Documentation/Manual/SL-Offset.html
https://www.spectacles.com/
https://www.spectacles.com/
https://threejs.org/
https://unity.com/releases/editor/whats-new/2021.3.16l
https://unity.com/releases/editor/whats-new/2021.3.16l
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@2.2/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@2.2/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@2.2/manual/index.html
https://www.unrealengine.com/en-US
https://www.unrealengine.com/en-US
https://www.w3.org/TR/UISecurity/#privacy-considerations
https://www.w3.org/TR/UISecurity/#privacy-considerations
https://www.w3.org/TR/webxr/
https://www.w3.org/TR/2022/CRD-webxr-20220601/
https://www.w3.org/TR/2022/CRD-webxr-20220601/
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/
https://www.ginx.tv/en/pokemon-go/invisible-obstacle
https://www.ginx.tv/en/pokemon-go/invisible-obstacle

Evolution of a trusted B3 window system prototype. In IEEE
Symposium on Security and Privacy, 1992.

[49] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk,
Steve Hanna, and Erika Chin. Permission Re-Delegation:
Attacks and defenses. In USENIX Security Symposium, 2011.

[50] Lucas Silva Figueiredo, Benjamin Livshits, David Molnar,
and Margus Veanes. Prepose: Privacy, security, and reliability
for gesture-based programming. In IEEE Symposium on
Security and Privacy (SP), pages 122–137, 2016.

[51] George Fink and Matt Bishop. Property-based testing: a new
approach to testing for assurance. ACM SIGSOFT Software
Engineering howpublisheds, 22(4):74–80, 1997.

[52] Jassim Happa, Mashhuda Glencross, and Anthony Steed. Cy-
ber security threats and challenges in collaborative mixed-
reality. Frontiers in ICT, 6:5, 2019.

[53] Eric Dean Haugh and Matt Bishop. Testing C programs for
buffer overflow vulnerabilities. PhD thesis, Citeseer, 2002.

[54] Lin-Shung Huang, Alexander Moshchuk, Helen J Wang, Stu-
art Schechter, and Collin Jackson. Clickjacking: Attacks and
defenses. In USENIX security symposium, pages 413–428,
2012.

[55] Suman Jana, David Molnar, Alexander Moshchuk, Alan Dunn,
Benjamin Livshits, Helen J Wang, and Eyal Ofek. Enabling
fine-grained permissions for augmented reality applications
with recognizers. In 22nd USENIX Security Symposium,
pages 415–430, 2013.

[56] Suman Jana, Arvind Narayanan, and Vitaly Shmatikov. A
scanner darkly: Protecting user privacy from perceptual appli-
cations. In IEEE Symposium on Security and Privacy, pages
349–363, 2013.

[57] Levente Juhász, Tessio Novack, Hartwig H Hochmair, and
Sen Qiao. Cartographic vandalism in the era of location-
based games—the case of openstreetmap and pokémon go.
ISPRS International Journal of Geo-Information, 9(4):197,
2020.

[58] Mark Kilgard. Creating reflections and shadows using stencil
buffers. In At Game Developers Conference, volume 7, 1999.

[59] Kiron Lebeck, Tadayoshi Kohno, and Franziska Roesner.
How to safely augment reality: Challenges and directions.
In Proceedings of the 17th International Workshop on Mobile
Computing Systems and Applications, pages 45–50, 2016.

[60] Kiron Lebeck, Tadayoshi Kohno, and Franziska Roesner. En-
abling multiple applications to simultaneously augment re-
ality: Challenges and directions. In Proceedings of the 20th
International Workshop on Mobile Computing Systems and
Applications, pages 81–86, 2019.

[61] Kiron Lebeck, Kimberly Ruth, Tadayoshi Kohno, and
Franziska Roesner. Securing augmented reality output. In
2017 IEEE Symposium on Security and Privacy (SP), pages
320–337. IEEE, 2017.

[62] Daehyeon Lee, Woosung Shim, Munyong Lee, Seunghyun
Lee, Kye-Dong Jung, and Soonchul Kwon. Performance
Evaluation of Ground AR Anchor with WebXR Device API.
Applied Sciences, 11(17):7877, 2021.

[63] Hyunjoo Lee, Jiyeon Lee, Daejun Kim, Suman Jana, Insik
Shin, and Sooel Son. AdCube: WebVR Ad Fraud and Prac-
tical Confinement of Third-Party Ads. In USENIX Security
Symposium, pages 2543–2560, 2021.

[64] Yeonjoon Lee, Xueqiang Wang, Kwangwuk Lee, Xiaojing
Liao, XiaoFeng Wang, Tongxin Li, and Xianghang Mi. Under-
standing iOS-based Crowdturfing Through Hidden UI Analy-
sis. In USENIX Security Symposium, pages 765–781, 2019.

[65] Sarah M Lehman, Haibin Ling, and Chiu C Tan. Archie: A
user-focused framework for testing augmented reality applica-
tions in the wild. In 2020 IEEE Conference on Virtual Reality
and 3D User Interfaces (VR), pages 903–912. IEEE, 2020.

[66] Meng Luo, Oleksii Starov, Nima Honarmand, and Nick Niki-
forakis. Hindsight: Understanding the evolution of UI vul-
nerabilities in mobile browsers. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications
Security, pages 149–162, 2017.

[67] Tongbo Luo, Xing Jin, Ajai Ananthanarayanan, and Wenliang
Du. Touchjacking attacks on web in android, ios, and win-
dows phone. In Foundations and Practice of Security: 5th
International Symposium, FPS 2012, Montreal, QC, Canada,
October 25-26, 2012, Revised Selected Papers 5, pages 227–
243. Springer, 2013.

[68] Joel Martin and David Levine. Property-based testing of
browser rendering engines with a consensus oracle. In 2018
IEEE 42nd Annual Computer Software and Applications Con-
ference (COMPSAC), volume 2, pages 424–429. IEEE, 2018.

[69] Ülkü Meteriz-Yıldıran, Necip Fazıl Yıldıran, Amro Awad,
and David Mohaisen. A keylogging inference attack on air-
tapping keyboards in virtual environments. In 2022 IEEE
Conference on Virtual Reality and 3D User Interfaces (VR),
pages 765–774. IEEE, 2022.

[70] Vivek Nair, Wenbo Guo, Justus Mattern, Rui Wang, James F
O’Brien, Louis Rosenberg, and Dawn Song. Unique identi-
fication of 50,000+ virtual reality users from head & hand
motion data. arXiv preprint arXiv:2302.08927, 2023.

[71] Paweł Nowacki and Marek Woda. Capabilities of ARcore and
ARkit platforms for AR/VR applications. In International
Conference on Dependability and Complex Systems, pages
358–370. Springer, 2019.

[72] Aleph One. Smashing the stack for fun and profit. Phrack,
7(49), November 1996.

[73] Zainab Oufqir, Abdellatif El Abderrahmani, and Khalid Satori.
ARKit and ARCore in serve to augmented reality. In 2020 In-
ternational Conference on Intelligent Systems and Computer
Vision (ISCV), pages 1–7. IEEE, 2020.

[74] Joe Gibbs Politz, Spiridon Eliopoulos, Arjun Guha, and Shri-
ram Krishnamurthi. Adsafety: Type-based verification of
javascript sandboxing. arXiv preprint arXiv:1506.07813,
2015.

[75] Charles Reis, Alexander Moshchuk, and Nasko Oskov. Site
isolation: Process separation for web sites within the browser.
In USENIX Security Symposium, 2019.

[76] Olle Renius. A Technical Evaluation of the WebXR Device
API for Developing Augmented Reality Web Applications,
2019.

[77] Franziska Roesner and Tadayoshi Kohno. Securing embed-
ded user interfaces: Android and beyond. In 22nd USENIX
Security Symposium (USENIX Security 13), pages 97–112,
2013.

[78] Franziska Roesner and Tadayoshi Kohno. Security and pri-
vacy for augmented reality: Our 10-year retrospective. In
VR4Sec: 1st International Workshop on Security for XR and
XR for Security, 2021.

[79] Franziska Roesner, Tadayoshi Kohno, and David Molnar. Se-
curity and privacy for augmented reality systems. Communi-
cations of the ACM, 57(4):88–96, 2014.

[80] Franziska Roesner, David Molnar, Alexander Moshchuk, Ta-
dayoshi Kohno, and Helen J Wang. World-driven access
control for continuous sensing. In ACM Conference on Com-
puter and Communications Security, pages 1169–1181, 2014.

[81] Kimberly Ruth, Tadayoshi Kohno, and Franziska Roesner. Se-
cure Multi-Sser content sharing for augmented reality applica-
tions. In 28th USENIX Security Symposium, pages 141–158,
2019.

[82] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin Jack-
son. Busting frame busting: a study of clickjacking vulnera-
bilities at popular sites. IEEE Oakland Web, 2(6):24, 2010.

[83] Tim Scargill, Gopika Premsankar, Jiasi Chen, and Maria Gor-
latova. Here To Stay: A Quantitative Comparison of Vir-
tual Object Stability in Markerless Mobile AR. In Proc.
IEEE/ACM Workshop on Cyber-Physical-Human System De-
sign and Implementation, 2022.

[84] Jonathan S. Shapiro, John Vanderburgh, Eric Northup, and
David Chizmadia. Design of the EROS trusted window sys-
tem. In USENIX Security Symposium, 2004.

[85] Carter Slocum, Xukan Ran, and Jiasi Chen. RealityCheck: A
tool to evaluate spatial inconsistency in augmented reality. In
2021 IEEE International Symposium on Multimedia (ISM),
pages 58–65. IEEE, 2021.

[86] Carter Slocum, Yicheng Zhang, Nael Abu-Ghazaleh, and Jiasi
Chen. Going through the motions:AR/VR keylogging from
user head motions. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 159–174, 2023.

[87] Ivo Sluganovic. Security of mixed reality systems: authen-
ticating users, devices, and data. PhD thesis, University of
Oxford, 2018.

[88] Zihao Su, Faysal Hossain Shezan, Yuan Tian, David Evans,
and Seongkook Heo. Perception Hacking for 2D Cursorjack-
ing in Virtual Reality. 2022.

[89] Porfirio Tramontana, Marco De Luca, and Anna Rita Fasolino.
An Approach for Model Based Testing of Augmented Reality
Applications. In RCIS Workshops, 2022.

[90] Rahmadi Trimananda, Hieu Le, Hao Cui, Janice Tran Ho,
Anastasia Shuba, and Athina Markopoulou. OVRseen: Au-
diting Network Traffic and Privacy Policies in Oculus VR.
In 31st USENIX security symposium (USENIX security 22),
pages 3789–3806, 2022.

[91] Tetiana A Vakaliuk and Svitlana I Pochtoviuk. Analysis of
tools for the development of augmented reality technologies.
CEUR Workshop Proceedings, 2021.

[92] Steven Van Acker, Philippe De Ryck, Lieven Desmet, Frank
Piessens, and Wouter Joosen. Webjail: least-privilege inte-
gration of third-party components in web mashups. In Pro-
ceedings of the 27th Annual Computer Security Applications
Conference, pages 307–316, 2011.

[93] John Vilk, David Molnar, Benjamin Livshits, Eyal Ofek, Chris
Rossbach, Alexander Moshchuk, Helen J Wang, and Ran
Gal. SurroundWeb: Mitigating privacy concerns in a 3D
web browser. In IEEE Symposium on Security and Privacy,
pages 431–446, 2015.

[94] Xiaoyin Wang. Vrtest: an extensible framework for auto-
matic testing of virtual reality scenes. In Proceedings of
the ACM/IEEE 44th International Conference on Software
Engineering: Companion Proceedings, pages 232–236, 2022.

[95] Yi Wu, Cong Shi, Tianfang Zhang, Payton Walker, Jian Liu,
Nitesh Saxena, and Yingying Chen. Privacy leakage via
unrestricted motion-position sensors in the age of virtual
reality: A study of snooping typed input on virtual keyboards.
In 2023 IEEE Symposium on Security and Privacy (SP), pages
3382–3398. IEEE Computer Society, 2023.

[96] Eisa Zarepour, Mohammadreza Hosseini, Salil S Kanhere,
and Arcot Sowmya. A context-based privacy preserving
framework for wearable visual lifeloggers. In IEEE PerCom
Workshops, pages 1–4, 2016.

[97] Xian Zhan, Lingling Fan, Sen Chen, Feng We, Tianming Liu,
Xiapu Luo, and Yang Liu. Atvhunter: Reliable version de-
tection of third-party libraries for vulnerability identification
in android applications. In 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering (ICSE), pages
1695–1707. IEEE, 2021.

[98] Mingxue Zhang, Wei Meng, Sangho Lee, Byoungyoung Lee,
and Xinyu Xing. All your clicks belong to me: Investigating
click interception on the web. In USENIX Security Sympo-
sium, pages 941–957, 2019.

[99] Yicheng Zhang, Carter Slocum, Jiasi Chen, and Nael Abu-
Ghazaleh. It’s all in your head (set): Side-channel attacks on
ar/vr systems. In USENIX Security, 2023.

[100] Zicheng Zhang, Wenrui Diao, Chengyu Hu, Shanqing Guo,
Chaoshun Zuo, and Li Li. An empirical study of potentially
malicious third-party libraries in android apps. In Proceed-
ings of the 13th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, pages 144–154, 2020.

[101] Yiqin Zhao, Sheng Wei, and Tian Guo. Privacy-preserving
reflection rendering for augmented reality. In Proceedings
of the 30th ACM International Conference on Multimedia,
pages 2909–2918, 2022.

	Introduction
	Background and Motivation
	Selected Properties and Evaluation Metrics
	Threat Model and Proof-of-Concept Attacks
	Threat Model And Attack Preconditions
	Clickjacking: Leveraging Inconsistency between Rendering and Interaction Orders
	Denial-of-Service Proof-of-Concept: Leverage Invisibility
	Input Forgery: Leveraging Synthetic User Input
	Intercepting User Inputs: Combining Invisible Objects and Synthetic User Input
	Object Erasure: Leveraging Invisible Meshes

	Empirical Investigation
	Overall Experiment Infrastructure
	Experiment Platforms and Configurations
	Experiments and Results
	Same Space Experiments and Results
	Invisibility Experiments and Results
	Synthetic Input Experiments and Results

	Security Implications

	Discussion
	Problem Formulation
	Knowledge of Defenses for 2D UIs Will Help
	Knowledge of Defenses for 2D UIs Is Not Sufficient
	Potential Defensive Techniques
	Stepping Back

	Additional Related Work
	Conclusion

